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ABSTRACT

A smart room of the future is expected to facilitate intelli-
gent interaction with its occupants while respecting their pri-
vacy. Although standard video cameras can be used to learn
where the occupants are and what they do, they raise privacy
concerns. While this can be mitigated by severely reducing
camera resolution, it will also impact the utility of the camera
network. This work investigates and quantifies the tradeoff
between camera resolution and action recognition accuracy.
Rather than building a physical testbed to carry out this study,
we use a graphics engine to simulate a room with 5 cameras,
and to animate avatars using skeletal movements of real users
captured by a Kinect v2 camera. We study resolutions from
100×100 pixels down to 1×1 using a state-of-the-art action
recognition method at higher resolutions and we propose a
new approach at ultra-low resolutions. In extensive simula-
tions, we conclude that on a dataset of 12 individuals per-
forming 4 actions our algorithm applied to single-pixel data
performs very close to the state-of-the-art method applied to
100×100 data, suggesting that reliable action recognition can
be achieved without compromising occupant’s identity.

Index Terms— Action recognition, privacy-preserving,
very low resolution

1. INTRODUCTION

While many of our personal items are already “smart” (e.g.,
smartphones, smart watches), extending this to the infrastruc-
ture around us is more challenging. One effort in this direc-
tion is research on smart spaces – environments that allow in-
telligent interaction with their occupants, be it a living or con-
ference room. Among the promised benefits of future smart
rooms are improved energy efficiency, sustainable health ben-
efits and increased productivity. For instance, localization of
human subjects may enable direct illumination of target ar-
eas saving energy in areas void of humans. Recognizing the
types of activities may allow task-optimized lighting, e.g., re-
duced screen glare when working on a laptop. As for produc-
tivity, localization of occupants may help maximize through-
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Fig. 1. A smart room simulated in Unity3D c⃝ with 5 cameras
and a single omni-directional light source mounted overhead.

put rates in visible light communication (VLC) between fixed
transceivers (ceiling, walls) and mobile devices (smartphones,
tablets, laptops). Finally, hand gestures can be used to control
various room conditions (e.g., temperature, light). Realizing
these benefits, requires, among other things, reliable recogni-
tion of human actions and activities.

Although extensive research has been performed to date
on human action recognition, most of the work exploits video
cameras. However, with the increasing concern about privacy,
standard video cameras seem unsuitable for smart spaces of
the future. Concerns about privacy can be partially addressed
by significantly reducing the camera resolution. This, how-
ever, degrades recognition accuracy. While this can be mit-
igated by using multiple sensors it is unclear to what extent,
thus motivating a study of tradeoffs between camera resolu-
tion and action recognition accuracy. Our ultimate goal is to
evaluate whether extreme “single-pixel” cameras can provide
enough information to accurately recognize actions.

Our study would be impractical on a real testbed; chang-
ing the number of cameras, and their resolutions, locations,
orientations for each studied scenario is very tedious. There-
fore, we chose to animate avatars in a simulated smart room
using the Unity3D c⃝ graphics engine. However, we animated
the avatars with true human motions captured by Kinect v2
camera in a physical testbed. Fig. 1 shows our simulated
smart room from one viewpoint.

In this paper, we report results of our simulation using
5 ceiling-mounted cameras (Fig. 1) with resolutions varying



from 100 × 100 at the high end to 1 × 1 at the extreme low
end (5 single-pixel cameras). Since at the low end, standard
action recognition methods based on optical flow, trajectories
or silhouettes cannot be used, we propose a new approach
based on the time series of brightness values.

2. RELATED WORK

There is an excellent review of human activity recognition us-
ing full resolution color cameras by Aggarwal and Ryoo [1].
Arguably, the most important step in such methods is feature
extraction from the data produced by video cameras. Some
of the most common features used are optical flow [2], point
trajectories [3], silhouettes [4, 5, 6, 7] and spatio-temporal
interest points [8, 9]. Much less research has been devoted
to action recognition from low-resolution data. Efros et al.

[2] apply optical flow when the human is at least 30 pixels
tall, and use nearest-neighbor classification of optical flow se-
quences with a distance metric based on frame-to-frame nor-
malized correlation aggregated in time. Ahad et al. [10] use
time-aggregated optical flow to obtain directional motion his-
tory images. They extract Hu moments from each channel
to obtain the feature vectors and apply a K-nearest neigh-
bor classifier. This method works well on resolutions down
to 32 × 24. Reliable optical flow cannot be computed at
lower resolutions. Tao et al. [11] use a network of 20 ceiling-
mounted binary infrared sensors to recognize daily activities
without privacy violation. An SVM classifier applied to the
short-duration averages of binary values gives a good recog-
nition performance, however we note that there is a signif-
icant location bias in most of the activities thus potentially
inflating the recognition performance. The aforementioned
features tend to perform poorly at low resolutions. At reso-
lutions from 10× 10 down to 1× 1, these features are either
ill-posed or too noisy. In addition, privacy-preserving track-
ing and coarse pose estimation (estimating standing or sitting)
have been proposed by Jia and Radke [12] based on a sparse
set of time-of-flight measurements.

3. OVERVIEW OF OUR APPROACH

Characterizing the full range of possible trade-offs between
camera resolution and recognition accuracy is a daunting task
since there are simply too many degrees of freedom avail-
able to explore: the number of cameras, their zoom, and color
settings, their position and orientation relative to the room,
and the number, position, and orientation of training and test
avatars in the room. In this work, we explore only a small
sliver of this problem by focusing on uncovering the trade-off
between camera resolution and action recognition accuracy
while holding all other degrees of freedom fixed. In particu-
lar, we study a network of 5 grayscale cameras at fixed posi-
tions and orientations relative to the room. We further assume
that there is a single avatar in the room and the zoom setting of

each camera is such that the avatar roughly covers its field of
view (FOV). We also assume that all training and test avatars
are roughly at the same position and orientation relative to the
camera network. Finally, we assume that all cameras have the
same resolution. With this setup, we change the resolution
setting of the cameras from 100 × 100 all the way down to
1× 1 and evaluate the action recognition accuracy.
Action Recognition at Higher Resolutions: In order to
study the trade-off between resolution and accuracy, we need
an algorithm for action recognition. Instead of developing
a completely new algorithm, we use the method proposed
in [7] whose performance is competitive with current state-
of-the-art methods. This method captures the shape of the
silhouette tunnel of an action - which can be obtained via
background subtraction - through the empirical covariance
matrix of certain local features defined at every pixel inside
the tunnel. These local features include normalized spatio-
temporal coordinates of the pixel and distances from the pixel
to the tunnel boundaries along a fixed set of directions (see
[7, Sec. IV.A] for a detailed description). The similarity
between two action sequences is then measured by the ℓ1
distance between their scale-normalized feature covariance
matrices. The action recognition algorithm is then a simple
nearest-neighbor classifier based on this distance metric.
Dealing with Extremely Low Resolutions: The success of
current state-of-the-art action recognition algorithms hinges
on reliable estimation of certain basic features such as sil-
houette tunnels or optical flow. At resolutions roughly below
10 × 10, such features cannot be reliably or even meaning-
fully estimated. For example, the silhouette tunnel will have
imprecise pixel-to-boundary distance features thus causing a
drastic drop in performance. While more nuanced approaches
are certainly possible to deal with such low resolutions, in this
work we use a simple nearest-neighbor classifier based on the
ℓ1 distance between the mean-subtracted interpolated time-
series of pixel grayscale values. To elaborate, let xi,j,k[t] and
yi,j,k[t] denote the grayscale values of pixel (i, j) in camera k
at time t for action sequences x and y, respectively, after they
have been linearly stretched to a common length of T = 500
using cubic-spline interpolation. Let
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where the camera resolution is R ×R. We subtract the mean
because it represents a “static” pixel- and camera-dependent
illumination which does not capture action dynamics. The



Fig. 2. Avatars used in experiments

advantage of this approach is its simplicity. Admittedly more
sophisticated fusion methods are certainly possible, but in our
approach, distances from all 5 cameras are combined addi-
tively with equal weights. However, we should expect this
metric to be sensitive to positions of avatars in the FOV and
indeed this is reflected in our experimental results.

4. DATASET

In order to empirically quantify the trade-off between cam-
era resolution and action recognition accuracy, we created a
dataset consisting of 4 actions, each repeated 3 times, from
12 different subjects (5 female, 7 male), comprising young
to middle-aged adults, using a single Kinect v2 camera fac-
ing the subjects. We selected 4 actions: Answering Phone

(about 12 sec long), Showing of Hand (akin to voting – 6 Sec),
Writing on Board (10 sec), and Walking (4 sec). These are
representative of actions that can occur in a typical seminar-
room environment. All actions are performed while standing.
Walking is the only one where there is significant translational
motion of the subject within the FOV.

To simulate the actions in a virtual room environment with
arbitrary camera viewpoints and resolutions, we imported the
skeletal data sequences containing the dynamics of actions
into Unity3D c⃝. We used 8 avatars available in Unity3D c⃝,
5 male and 3 female (Fig. 2), and animated them using the
imported skeletal coordinates. With the exception of Walk-

ing, the avatars are situated in the same location to remove
action-specific location-bias which can artifically boost action
recognition accuracy. We placed 5 cameras on the ceiling of
the simulated room (Fig. 1). Views of actions from the same
camera are shown in Fig. 3 while those from all 5 cameras for
Showing of Hand are shown in Fig. 4.

5. EXPERIMENTAL RESULTS

In order to quantify the tradeoff between resolution and ac-
tion recognition accuracy, for each resolution setting we com-
pute the average Correct Classification Rate (CCR) using a
variation of leave-one-out cross-validation (LOOCV) as fol-
lows. We compute the average CCR score across M itera-
tions where each iteration corresponds to a random assign-
ment of same-gender avatars to each of the 12 subjects in our

Answering Phone Showing of Hand Writing on Board Walking

Fig. 3. Sample frames from 4 actions for avatar 3.

Camera 1 Camera 2 Camera 3 Camera 4 Camera 5

Fig. 4. 5 viewpoints for Showing of Hand by avatar 6.

Table 1. CCR for time-series and silhouette-covariance meth-
ods across a range of resolutions using 5 cameras jointly.

Time-series method (M=100) Silh.-cov. method (M=1,000)

R×R CCR StDev R×R CCR StDev

10×10 45.26% 3.33% 10×10 84.47% 1.78%

5×5 69.44% 3.31% 20×20 84.90% 1.78%

4×4 80.14% 3.24% 30×30 84.90% 1.92%

3×3 85.56% 3.68% 40×40 85.87% 1.68%

2×2 87.04% 2.76% 50×50 85.70% 1.67%

1×1 85.69% 3.16% 100×100 86.88% 1.70%

dataset. Specifically, in each iteration, each of the 12 sub-
jects is sequentially selected to be the test subject. Then, one
same-gender avatar is randomly assigned to the test subject
and the assigned avatar and all 12 samples from that subject
(4 actions × 3 repetitions) are removed from the pool. Next,
the remaining training subjects are randomly assigned same-
gender avatars (different from test-subject’s avatar). Then,
each of the 12 samples of the test avatar is classified using the
132 samples of the 11 training subjects which yields an av-
erage CCR for this test subject. By averaging the CCR score
across all 12 test subjects we get an average CCR for one iter-
ation. This process is repeated for M iterations to obtain the
final average CCR. We perform this test on resolutions from
10×10 down to 1×1 and report the results in Table 1.

The single-pixel CCR is 85.69% and increases to 87.04%
for 2×2 resolution. This is to be expected as more data are
available at the higher resolution. However, the CCR drops
at subsequent resolutions with a severe dip at 5×5 to 69.44%.
This was unexpected but upon careful analysis we realized
that at higher resolutions our simplistic metric between two
time-series does not account for differences in the locations,
sizes, and orientations of the avatar projections under com-
parison. At 1×1 resolution, this is not an issue of course.

In order to verify this hypothesis, we performed a coarse
alignment by co-locating the centroids of silhouettes (eas-
ily extracted by background subtraction). In consequence, at
10×10 resolution CCR increased from 45.26% to 82.95% and
at 5×5 resolution it went from 69.44% to 76.17%. Clearly,
the time-series method is alignment-sensitive but, fortunately,
not so much at extremely low resolutions.
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Fig. 5. Left: Single-pixel signals for 4 actions, 2 users and 2 avatars. Right: Sample silhouettes extracted at different resolutions
and then re-scaled to the same size.

In Fig. 5, we show examples of signals obtained from a
single-pixel camera for all 4 actions performed by 2 differ-
ent users and each rendered by 2 different avatars. Clearly,
Showing of Hand and Writing exhibit similar profiles and are
indeed the main source of confusion for our method (we omit
the confusion matrix due to space constraints).

Table 2. CCR for the proposed time-series method (M=100)
using each of the 5 cameras separately (Fig. 4).

Cam1 Cam2 Cam3 Cam4 Cam5

1×1 70.44% 78.26% 74.81% 58.72% 55.27%

2×2 76.81% 78.67% 80.78% 69.49% 65.65%

3×3 77.83% 72.60% 73.70% 73.57% 71.92%

4×4 72.04% 55.25% 65.72% 69.72% 76.20%

5×5 61.32% 64.38% 67.99% 70.01% 77.35%

10×10 60.00% 57.82% 59.31% 59.44% 68.87%

Table 3. CCR for the silhoutte-covariance method
(M=1,000) using each of the 5 camera separately (Fig. 4).

Cam1 Cam2 Cam3 Cam4 Cam5

10×10 81.50% 83.92% 81.85% 81.62% 80.26%

20×20 81.96% 82.47% 82.19% 81.77% 84.28%

30×30 81.48% 82.57% 82.40% 84.33% 86.05%

40×40 81.97% 84.60% 83.36% 84.84% 86.65%

50×50 81.97% 85.50% 83.83% 85.20% 86.88%

100×100 83.21% 87.42% 86.03% 83.97% 85.37%

Results for the silhouette-covariance method at resolu-
tions 10×10 and higher are also shown in Table 1. Although
the CCR drops consistently with resolution reduction, which
was expected due to the degradation of silhouettes (Fig. 5), in-

terestingly this drop is rather small: from 86.88% at 100×100
to 84.47% at 10×10. Furthermore, despite a relatively ac-
curate silhouette at 100×100 the covariance method’s CCR
is only 1.19% higher than that of the time-series method on
single-pixel data. In Tables 2 and 3, we compare camera-by-
camera performance of the two methods (the computation of
distances is confined to the output of one camera). While the
CCR for the silhouette-covariance method is quite consistent
across cameras and resolutions, the performance of the time-
series method exhibits wide variations across both. Aggregat-
ing time-series distances across cameras largely compensates
for the variability of single-camera outcomes.

6. CONCLUDING REMARKS

This work studied and quantified the impact of camera res-
olution on action recognition accuracy in a simulated en-
vironment environment (Unity3D c⃝ + Kinect v2). Results
for a dataset of 12 individuals performing 4 actions indi-
cate, somewhat surprisingly, that the recognition accuracy at
single-pixel resolution can be quite close to that at 100× 100
resolution. This work has explored just one degree of free-
dom in the space of possible trade-offs between recognition
accuracy and resolution. The proposed approach can be used
to study and quantify trade-offs for other parameters such as
the number of cameras, their zoom settings, their position and
orientation relative to the room, etc.

More information on this research and dataset, as well as
some resources are available on-line [13].
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