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1. ABSTRACT

This paper presents a depth image based rendering algorithm
for view synthesis task. We address the challenging occlu-
sion filling problem with a hierarchical clustering approach.
Depth distribution of neighboring pixels around each occlu-
sion is explored and from which we determine the number of
surrounding depth planes with agglomerative clustering. Pix-
els in the most distant plane are picked as candidates to re-
store that occlusion. The proposed algorithm is evaluated on
Middlebury stereo dataset and Microsoft Research 3D video
dataset. Results show that our method ranks among the best
performers.

Index Terms— View Synthesis, Free Viewpoint, Depth
Image Based Rendering, Occlusion Filling, Hierarchical
Clustering

2. INTRODUCTION

Affordable virtual reality devices and accurate real-time view-
point tracking sensors have made possible a new class of im-
mersive viewing experiences, allowing user to interactively
observe a dynamic scene from arbitrary perspectives. This
trend also creates demands on producing related visual con-
tents such as free viewpoint video, panorama video and etc.
While multi-camera systems are commonly deployed in cap-
turing these contents, user might pick a viewpoint where no
physical camera is installed. In such case, the view needs to
be synthesized.

Depth image based rendering (DIBR) is a popular ap-
proach for view synthesis problem [!]. Standard DIBR per-
forms 3D warping with texture and depth information from
the reference viewpoints to create the new view. Various in-
painting techniques are applied to deal with the occlusions in
warped view. These missing pixels are not visible in any input
images, and therefore to restore them in a visually acceptable
way is challenging.

This paper explores one of the most typical DIBR prob-
lem as shown in Fig.1: Given a pair of rectified images and
corresponding disparity maps, how to synthesize the view
from a new vantage point on the baseline? Note that our

Fig. 1. A typical DIBR problem: given views at 0 and 1, how
to synthesize view at § € (0,1)?

method can also be generalized to unrectified cases and we
show that in Sec.6.2. A pipeline of proposed algorithm is
provided in Fig.2. We first generate two sets of intermediate
color images and depth maps from two reference views in-
dividually using 3D warping. Pixels warped from significant
depth edges in the reference views are processed to remove
ghost contours. The intermediate results are then merged to-
gether with alpha blending. We propose a hierarchical clus-
tering based occlusion filling technique. For each occluded
area, its neighboring pixels are clustered into groups based
on the depth distribution. Each group is regarded as a depth
plane. The occluded area is considered as part of the farthest
plane and only valid pixels in that plane are used for restora-
tion. Depth map is filled first and assists the inpainting for
color image. Proposed algorithm obtained decent results on
Middlebury and Microsoft 3D video datasets.

3. RELATED WORK

View synthesis has been an active research field over a long
period and a comprehensive review of related techniques can
be found in [2]. One common approach is using model-based
rendering [3, 4] , which requires building a 3D scene model,
typically polygon mesh.

Another mainstream approach is DIBR, which avoids the
explicit modeling step and replaces it with a 3D warping pro-
cess. Zinger et al. [5] present a standard DIBR pipeline.



The paper indicates some major challenges in DIBR such as
dealing with unreliable depth estimation and occlusion fill-
ing. For artifacts caused by unreliable depth estimation, [6, 7]
use layered representation to label the reliability of pixels on
edges. The layers are warped individually and then merged
together. A list of occlusion filling methods and their perfor-
mance comparison is available in [8].

Under similar problem setting as ours, [9, 10] use depth
information to assist the occlusion inpainting process. Tran
et al. [11] improve it with a lattice structured conditional
random field and graph cuts minimization in recovering un-
reliable and occluded pixels. Lim et al. [I2] present an
exemplar-based inpainting framework. Jain et al. [13] pro-
pose an efficiency-oriented algorithm aiming for real-time
performance with minimal performance loss.

4. VIEW SYNTHESIS

4.1. 3D Warping

A general formulation of 3D warping is presented in [14].
If reference views are rectified and new view locates on the
baseline, the problem is reduced to a trivial task of shifting
the pixel in the reference views horizontally by its scaled dis-
parity. Given color images [y ; and disparity maps do 1 at
reference viewpoints, the intermediate color images Iéyl and
depth maps D(t)’1 are generated as:

I§(i,j =0+ do(i, ) =
(6,5 + (1= 0) *di(i,5))

D (iyj — 0% do(i,5)) = fo-b/do(i, )
Di(i,j+ (1= 0) % di(i,)) = fr-b/di(4,5),

fo,1,0b are the focal length and stereo baseline. For warping
destinations (i, j') with non-integer column index j' ¢ Z, we
warp it to both (4, [§']), (¢, |j'|) to mitigate crack artifacts.
If multiple pixels are warped to the same destination, the one
with smallest depth value is retained. Depth map is converted
back to disparity map only for displaying purpose in the pa-
per.
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4.2. Ghost Contour Removal

Edges are usually sharp in depth image. However, their coun-
terparts in color image tend to have a transition width. Edge
pixels with background depth but contaminated with fore-
ground color will cause ghost contour artifacts if not handled
properly (see Fig.4(b)). We first detect the significant edges
in the two reference views by applying Canny edge detector
[7] with a threshold 7. to the depth maps. Detected edges
are dilated and pixels within are divided into background and
foreground (Fig.4(a)). Pixels in I and I which are warped
from these background edge pixels are replaced by median
filtering their neighbors. Fig.4(c) shows the same region after
correction.

4.3. Merge Intermediate Results

It It and D§, D are merged into I' and D*. If pixel x is
visible in both intermediate results and |D{(z) — D} (x)| <
T4, we blend them by

I'(x) = (1= 0)  Ij(x) + 60 - Ii(x)
D'(x) = (1-0) - Do(x) + 0 - Di ()

The information from the closer reference view is assigned

with larger weight. If | D§(x) — D (x)| > 74, we retain the

pixel from intermediate result i = arg min D!(z). The intu-
3

ition behind is closer objects occlude farther objects.

5. HOLE FILLING

Holes in I, D; can be caused by two main reasons. One is
the insufficient sampling rate in reference images: as view-
point changes, objects occupy more pixels than they do in the
reference viewpoints; the other is occlusion: regions blocked
in the reference views are revealed in the new view.

We notice that holes may locate in the middle of one
depth plane or at the intersection of multiple depth planes
(see Fig.5(a)). In the first case, the hole is considered as part
of the plane. In the second case, we observe that the hole is
very likely to be part of the background occluded by the fore-
ground objects in reference viewpoints. Therefore it makes
sense to label the hole as part of the farthest neighboring
depth plane.

5.1. Hierarchical Clustering

We explore the depth distribution of neighboring pixels
around each hole to determine the number of surrounding
depth planes. For a hole H;, we apply agglomerative hierar-
chical clustering to its 3rd-order neighboring pixels based on
their depth value: each pixel starts as a cluster. Two clusters
A, B will be merged if
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The merging order is based on a greedy manner, meaning
closest clusters merge first. The merging process stops when
all pairwise distances among remaining clusters exceed 7.
Fig.5(b) shows the number of remaining clusters around each
hole. Each cluster is regarded as a depth plane.

5.2. Depth Hole Filling

Pixels in the farthest remaining cluster C(H;) will help restor-
ing H;. Filling starts from pixels directly at the border with
these selected pixels and gradually propagate towards the re-
maining area of the hole. For pixel « inside holes H;:

D'(x) = median (D'(y)),
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Fig. 3. (a),(b),(d),(e) show the color images and disparity
maps of two intermediate results from set Arz in Middlebury
dataset. (c),(f) show merged color image and disparity map.

where y € N3(z) N C(H;), N® denotes 3rd-order neighbor.
Once  is filled, it is included in C(H;).

5.3. Color Hole Filling

Holes in the color image are filled in a similarly directional
manner. Instead of median filter, we use a variation of bilat-
eral filter [15].

(b) ()

Fig. 4. (a) shows the dilated significant edges in reference
view 0. Foreground pixels are colored blue and background
pixels are colored green. (b) shows a region with ghost con-
tours and (c) shows the same region after correction.
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Fig. 5. (a) shows holes surrounded by different number of
depth planes. (b) shows numbers of remaining clusters after
hierarchical clustering (blue = 1, green = 2, yellow = 3 and
red = 4). (c) shows filled disparity map
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Z is a normalization term. w; here is the weight function
depicting the spatial closeness between y and x:

w,(y) = e~ ly—=llz/o:

wy is the weight function relating to the depth closeness:

waly) = {e_lDt(y)_Dt‘“'””a D' y) — D' (a)| < 7
0, [D'(y) — D*(x)| > 7q
wy prevents x from being contaminated by pixels inside
other depth planes, which usually represent other objects. The
filled color image undergoes median filtering on the edges to
smooth out the sawtooth artifacts. Fig.6(a) shows the final
output color image.

6. EXPERIMENTAL RESULT

6.1. Middlebury Stereo Dataset

We evaluated the proposed algorithm on the Middlebury
stereo dataset (2005,2006) [20]. The dataset contains 27 sets
of multi-view images. Each set includes a pair of rectified
color images and corresponding disparity maps. Ground truth
color images for three in-between views (0 = 0.25,0.5,0.75)



Middlebury Jain et al. [13] Tran et al. [16] Ramachandran et al. [10] Proposed
Dataset PSNR(dB) | SSIM | PSNR(dB) | SSIM | PSNR(dB) SSIM PSNR(dB) | SSIM
Art 31.67 0.95 32.66 0.95 30.22 0.94 32.86 0.98
Books 30.10 0.93 30.92 0.93 28.74 0.92 32.55 0.96
Cloth1 35.04 0.96 35.99 0.97 33.66 0.94 38.28 1.00
Dolls 31.61 0.95 33.05 0.95 30.90 0.94 33.64 0.98
Laundry 31.66 0.95 32.13 0.95 31.32 0.94 32.81 0.98
Moebius 33.42 0.95 34.30 0.94 32.76 0.93 35.48 0.98
Monopoly 29.80 0.95 32.19 0.95 28.77 0.93 33.56 0.99
Plastic 37.91 0.98 37.77 0.98 37.95 0.98 40.32 1.00
Reindeer 32.79 0.95 33.70 0.94 | not reported | not reported 34.85 0.99
Woodl 36.29 0.94 37.47 0.94 | notreported | not reported 38.59 1.00
Average 33.03 0.95 34.02 0.95 31.84 0.93 35.30 0.98
Table 1. PSNR and SSIM for proposed method and three state-of-art methods
Ballet Breakdancers
PSNR(dB) | SSIM | PSNR(dB) | SSIM
Oh [9] 32.50 0.87 31.75 0.83
Loghman [17] 30.36 0.92 31.64 0.91

VSRS [18] 30.23 0.90 31.17 0.89

Liu[19] 32.52 0.94 33.33 0.92

Proposed 32.55 0.96 31.77 0.90

Fig. 6. Left image shows the final output color image. Right
image shows the ground truth image.

Fig. 7. Left image shows a synthesized frame of Break-
dancers sequence. Right image shows the ground truth.

are also provided. In Table 1, we report PSNR and SSIM
scores for 10 sample sets (6 = 0.5) of proposed and 3
state-of-art algorithms. The results show that our method out-
performs others in all reported sets and achieves an average
PSNR of 35.30dB and SSIM of 0.98, leading the second best
algorithm by 1.28dB in PSNR and 0.03 in SSIM.

6.2. Microsoft Research 3D Video Dataset

We extended the experiment to the Microsoft Research 3D
video dataset [6]. The dataset includes Ballet and Break-
dancers video sequences. Each sequence provides 100 frames
of color images and depth maps for 8 cameras. The cameras
are positioned on an arc spanning about 20 degrees from one

Table 2. Comparison results on Microsoft 3D dataset: use
view 3 and view 5 to generate view 4.

end to the other. We select camera 3 and 5 as reference view-
points and camera 4 as new viewpoint. The warping step in
Sec.4.1 was replaced with the general 3D warping process and
0 in Sec. 4.3 equals Hn_,“,lwﬁ;lf;ﬂ_n”, where 13, T:., T, are
the translation vectors for left/right reference view and new
view respectively. We report average PSNR and SSIM scores
over 100 frames and comparison with other methods in Table
2. A sample frame is shown in Fig.7. Unlike most reported
algorithms, which utilize interframe information to enforce
temporal consistency, we treated each frame independently to
be persistent with the problem setting in this paper. Results
indicate the proposed algorithm has the best score for Ballet
and the second best for Breakdancers. We plan to incorporate
temporal information in future work to further improve the
performance of the proposed algorithm.

Complete results of aforementioned two experiments are
available at http://jidai.me/view-synthesis/.

7. CONCLUSION

We propose a hierarchical clustering based framework for the
challenging occlusion filling problem in the view synthesis
task. The proposed algorithm is tested on rectified (Middle-
bury) and unrectified (Microsoft Research 3D video) datasets.
Evaluation shows our method achieves good results under
both schemes.
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