
PYRAMID STRUCTURED OPTICAL FLOW LEARNING WITH MOTION CUES

Ji Dai, Shiyuan Huang, Truong Nguyen

University of California, San Diego

ABSTRACT

After the introduction of FlowNet and the large scale syn-
thetic dataset Flying Chairs, we witnessed a rapid growth of
deep learning based optical flow estimation algorithms. How-
ever, most of these algorithms rely on a very deep network
to learn both large and small motions, making them less ef-
ficient. They also process each frame individually for the
video dataset like MPI Sintel without using temporally corre-
lated information across frames. This paper presents a pyra-
mid structured network that estimates the optical flow from
coarse to fine. We use a much shallower subnetwork at each
pyramid level to predict an incremental flow, which contains
relatively small motions, based on higher level’s prediction.
For video dataset, the network utilizes motion cues from pre-
vious frames’ estimations for assistance. Evaluations show
that the proposed network outperforms FlowNet on multiple
benchmarks and has a slight edge on other similar pyramid
structure networks. The shallow network design shrinks the
parameter size by 88% comparing to FlowNet, allowing it to
reach almost 100 frames per second prediction speed.

Index Terms— Optical flow, Deep learning, Pyramid
Structure, Motion cue

1. INTRODUCTION

Optical flow estimation is a fundamental problem in com-
puter vision with many applications such as autonomous driv-
ing, object tracking, 3D reconstruction. Classic approaches
often focus on extracting robust features and solving energy
minimization problems affiliated with various models [1, 2,
3, 4, 5]. With deep learning making significant contributions
to computer vision tasks, researchers started to investigate its
usage in flow estimation [6, 7]. Early works mostly replaced
the traditional hand-crafted feature detectors with CNN and
preserved the energy minimization framework.

In 2015, Dosovitskiy et al. [8] released Flying Chairs,
a large synthetic flow dataset with ground truth. They also
proposed two end-to-end trained networks, namely FlowNetS
and FlowNetC, which learned to solve flow estimation from
Flying Chairs and, surprisingly, generalized well enough on
real data like KITTI. While they brought a paradigm shift,

This work is supported in part by NSF grant CNS 1456638

FlowNet performs not as well compared to traditional meth-
ods at that time. FlowNet2.0 [9], the following work by Ilg et
al., cascaded multiple FlowNet units and a specifically trained
network on a small displacement dataset called ”ChairsSD-
Hom”. They managed to achieve on-par performance with
state-of-the-art methods. Another interesting branch of re-
search is unsupervised learning. Obtaining ground truth flow
for real data is extremely laborious. To avoid that, Jason et al.
proposed an unsupervised loss combining warping loss as fi-
delity term and local smoothness as regularization term [10].
Zhu et al. used FieldFlow [7] to estimate a proxy ground truth
flow and trained a network to approximate that [11].

We observe that most of current learning based algorithms
have very deep network design due to the ambition of learn-
ing both large and small motions simultaneously. We argue
that such design leads to less efficiency. In fact, even for tra-
ditional methods, taking care of multi-scale motions is quite
challenging as large motions often induce hefty computations.
One practical solution is to decimate images into multiple res-
olutions to form a pyramid, thus the large motions span only
within several pixels at the lowest resolution.

We also argue that, when dealing with video data, using
estimated flows from previous frames should be helpful as
motions are highly temporally-correlated.

To address previous two arguments, we present a coarse-
to-fine pyramid structured network. Inputs to the network in-
clude two images, and two motion cues under constant ve-
locity and constant acceleration assumptions generated from
previously predicted flows. The network first decimates all
inputs into five levels of resolution. At each level, a subnet
computes an update flow based on the estimation from previ-
ous level. The details are elaborated in section 2.2.

SPyNet [12] by Ranjan et al. has the most similarity with
the proposed method. The main differences are: 1) proposed
method uses a different subnet design; 2) we incorporate mo-
tion cues to improve performance on video dataset.

Leveraging the pyramid structure, we successfully reduce
the network size by 88% compared to the FlowNetS [8].
Yet performance-wise, we achieve better scores on multiple
datasets as reported in Table 3. Benefiting from the reduced
size, the prediction only takes 0.012s per frame. Adding mo-
tion cues is also proved to be useful as we gain an additional
4.37% performance on MPI Sintel dataset.



2. METHOD

We first explain how to compute motion cues in section 2.1.
Network structure is detailed in sections 2.2 and 2.3.

2.1. Computing Motion Cues

Let It−2, It−1, It, It+1 be four consecutive frames in a video
and we are interested in estimating flow map Ft between It
and It+1. Ft−2, Ft−1 are estimated flow maps at previous
frames.

Note that Ft−1 indicates the correspondences between
pixels in It−1 and It, for example, pixel xt−1(i, j) in It−1 is
corresponding to pixel xt(i + F y

t−1(i, j), j + F x
t−1(i, j)) in

It, where F x, F y denote horizontal and vertical flow compo-
nents.

Suppose xt corresponds to xt−1 in It−1 and xt−2 in It−2,
we can predict Ft from Ft−1, assuming that pixels move in
constant velocity:

Ft(xt) = Ft−1(xt−1)

If we assume constant acceleration motions, Ft can be pre-
dicted from Ft−1, Ft−2 as:

Ft(xt) = 2Ft−1(xt−1)− Ft−2(xt−2)

Using ground truth flow maps Ft−1 and Ft−2 to predict
Ft for the MPI Sintel yields results with 4.502 avg. end-point-
error (EPE) for constant velocity model, and 3.400 avg. EPE
for constant acceleration model. End-point-error (EPE) is a
metric to evaluate flow estimation defined as:

EPE =
1

h× w

∑
i,j

√
(F x − F̂ x)2 + (F y − F̂ y)2,

where F̂ is the ground truth, h,w is the image width and
height. Lower EPE means better estimation.

We here report average scores for pixels with predictions.
Note that some pixels don’t have correspondences at previous
frames, and thus cannot be predicted. We observed that both
models give better results comparing to the original FlowNet
[8], as summarized in Table 3.

Fig.1 shows example results for two prediction models:
prediction under constant velocity assumption (denoted as
CV) and prediction under constant acceleration assumption
(denoted as CA).

2.2. Network Architecture

The inputs to the network are two images and the motion cues
from previous prediction as described in section 2.1. The net-
work first decimates inputs into five pyramid levels (resolu-
tion from coarse to fine). At each level, downsampled in-
puts together with an upsampled flow prediction from previ-
ous level are fed into a subnet, as shown in Fig.2.

Fig. 1. Example motion cues with EPE scores. Constant ac-
celeration model gives better prediction than constant velocity
model.

Fig. 3. Subnet architecture: The Subnet contains prediction
unit and fusion unit. For static image datasets, subnet outputs
predicted flow. For video datasets, subnet outputs fused flow.

2.3. Subnet Architecture

Fig.3 shows the subnet architecture, which contains two parts,
a prediction unit and a fusion unit. The prediction unit es-
timates an incremental flow and adds it to the input flow
from previous level to form the predicted flow. For non-video
datasets, fusion unit is not activated, thus the subnet only
outputs predicted flow.

For video dataset, we stack image 1, predicted flow, mo-
tion cues, together with corresponding warping brightness er-
rors, and feed them into fusion unit. The subnet outputs fused
flow.

2.3.1. Prediction Unit

Image 2 is first warped with input flow predicted at previous
pyramid level. Image 1 and warped image 2 are then stacked
as the inputs to the prediction unit. Detailed layer specs are
shown in Table 1. We adopt skip connections between con-



Fig. 2. High level network architecture: We show 3 pyramid levels here for demonstration purpose only, the network used in
the paper has five levels in total.

tracting and expanding parts to convey image details, which
is quite generic for per-pixel prediction vision problem [13].

Name kernel stride Ch. I/O Input
conv1 1 3× 3 1 6/32 Images
conv1 2 3× 3 1 32/32 conv1 1
conv2 1 3× 3 2 32/64 conv1 2
conv2 2 3× 3 1 64/64 conv2 1
conv3 1 3× 3 2 64/128 conv2 2
conv3 2 3× 3 1 128/128 conv3 1
upconv4 4× 4 2 128/64 conv3 2
upconv3 4× 4 2 128/32 upconv4 + conv2 2
upconv2 3× 3 1 64/32 upconv3 + conv1 2
pred. 3× 3 1 32/2 upconv2

Table 1. The implementation details of prediction unit

2.3.2. Fusion Unit

The inputs to fusion unit are image 1, predicted flow, motion
cues, and corresponding warping brightness errors. Warp-
ing brightness error [9] is computed by first warping image
2 with either predicted flow or motion cue, then subtracting
the warped images 2 from image 1. We reduce 3-channel
(RGB) error to 1-channel with L2 norm. Warping brightness
errors reflect the accuracy of the prediction and motion cues.
Detailed layer specs are shown in Table 2.

Name kernel stride Ch. I/O Input
conv1 3× 3 1 12/32 Img1 + flows + errors
conv2 3× 3 1 32/64 conv1
conv3 3× 3 2 64/128 conv2
upconv3 4× 4 2 128/64 conv3
upconv2 4× 4 2 64/32 upconv3
fused 3× 3 1 32/2 upconv2

Table 2. The implementation details of fusion unit

3. EXPERIMENTS
3.1. Implementation Details

We implemented the network in PyTorch with a Titan Xp
GPU. The network was trained using Adam optimizer [14]
with β1 = 0.9, β2 = 0.999. Each subnet was trained individ-
ually from coarse to fine. The weights of trained higher-level
subnets were fixed when training the lower-level ones.

We first trained prediction unit on Flying Chairs datasets
with batch size = 16. The learning rate was set to 1e-4 for the
first 50 epochs and reduced by half every 20 epochs after that
until the network converged.

We then trained fusion unit on MPI Sintel clean dataset
with the same batch size. The learning rate was set to 1e-4
at the beginning and reduced to 1e-5 after 50 epochs. Again,
the training continued until network converged. Motion cues
in training phase were all derived from ground truth flow of
previous frames. Weights in prediction unit were fixed when
training fusion unit. Both training/validation splits for Flying
Chairs and MPI Sintel followed [8].

At each pyramid level k, the subnet was trained to mini-
mized the average EPE loss Lk between output flow Fk and
the decimated ground truth flow F̂k.

To enrich the training data, we applied the following
data augmentations: random translation with a range of ±10
in both horizontal and vertical directions; random rotation
from ±15◦; Gaussian noise with σ uniformly sampled from
[0, 0.04]; random permutation of RGB channels; random
scaling from [0.8, 2.0]; random cropping of size [256, 256].

3.2. Evaluation on Benchmarks

MPI-Sintel. Since the fusion unit was trained on MPI Sintel
clean dataset, we performed test on MPI Sintel final dataset.
To fit in our network, we center-cropped images into 384 ×
1024. The motion cues were all derived from previous estima-
tions, no ground truth was used in any part during the testing.
We also did an ablation test with only activating prediction
unit to examine the gain from fusion unit.

Kitti2012. We evaluated the network on KITTI 2012



Method Sintel Clean Sintel Final KITTI 2012 Middlebury Flying Chairs Time (s)
train train 2012 train test

FlowNetS [8] 4.50 5.45 8.26 1.09 2.71 0.018
FlowNetC [8] 4.31 5.87 9.35 1.15 2.19 0.032
FlowNet2.0 [9] 2.02 3.14 4.09 0.35 - 0.123
SPyNet [12] 4.12 5.57 9.12 0.33 2.63 0.069
UnsupFlowNet [11] - 11.19 11.3 - 5.30 -
Pred. unit only 4.08 5.26 7.92 0.39 2.34 0.012
Pred. + Fusion unit (3.61) 5.03 - - - -

Table 3. Avg. EPE of proposed network compared to other state-of-the-art learning based methods on multiple datasets. We
added parentheses as fusion unit is trained on MPI Sintel clean. Run times are measured on Flying Chair datasets and excluding
data loading time.

Fig. 5. Examples of optical flow prediction on MPI Sintel final dataset. We show both results with/without fusion unit. Fusion
unit successfully improves the prediction. Some noise are removed and prediction errors are corrected.

Fig. 4. Examples of flow prediction on Flying Chairs dataset.

training dataset. We resized the images to 384 × 1024 to fit
in the network. There was no fine tuning process and we only
activated prediction units as this is not a video dataset.

Middlebury. We evaluated on Middlebury flow datasets,
the dataset contains 8 pairs of images with ground truth.
Again, we only activated prediction units. We resized all
images uniformly to 384× 640.

3.3. Analysis

Table 3 reports the results of the proposed and other learn-
ing based algorithms on selected benchmark datasets. We

show some example estimations on Flying Chairs and MPI
Sintel in Fig.4 and Fig. 5. Proposed network achieves better
scores than FlowNetS and FlowNetC on most tested dataset.
We also perform better than SPyNet on MPI Sintel dataset.
FlowNet2.0, which is much deeper than our network and par-
tially trained on additional dataset, has the lowest EPE over-
all.

By using motion cues, we slightly increased the perfor-
mance on MPI Sintel by 11.52% for training and 4.37% for
testing. Less gain in testing was expected as the motion cues
derived from previously estimated frames contained errors in
the first place. Size-wise, the proposed network has a total
of 3,815,360 trainable weights. Comparing with 32,070,472
in FlowNetS, our network is 88.1% smaller. The proposed
network is also the fastest among all tested networks, reach-
ing approximately 100 frames per second prediction speed on
Flying Chairs dataset.

4. CONCLUSION

We proposed a compact pyramid structured network that
learns to estimate optical flow efficiently. The network uses
previous frames’ estimations for assistance on video datasets.
Evaluations on multiple benchmarks have shown promising
results achieved by the proposed network.



5. REFERENCES

[1] Berthold KP Horn and Brian G Schunck, “Determining
optical flow,” Artificial intelligence, vol. 17, no. 1-3, pp.
185–203, 1981.

[2] Bruce D Lucas, Takeo Kanade, et al., “An iterative im-
age registration technique with an application to stereo
vision,” 1981.

[3] Thomas Brox, Andrés Bruhn, Nils Papenberg, and
Joachim Weickert, “High accuracy optical flow estima-
tion based on a theory for warping,” in European con-
ference on computer vision. Springer, 2004, pp. 25–36.

[4] Michael J Black and Paul Anandan, “The robust esti-
mation of multiple motions: Parametric and piecewise-
smooth flow fields,” Computer vision and image under-
standing, vol. 63, no. 1, pp. 75–104, 1996.

[5] Jerome Revaud, Philippe Weinzaepfel, Zaid Harchaoui,
and Cordelia Schmid, “Epicflow: Edge-preserving in-
terpolation of correspondences for optical flow,” in Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 1164–1172.

[6] Jia Xu, René Ranftl, and Vladlen Koltun, “Accurate
optical flow via direct cost volume processing,” arXiv
preprint arXiv:1704.07325, 2017.

[7] Christian Bailer, Bertram Taetz, and Didier Stricker,
“Flow fields: Dense correspondence fields for highly ac-
curate large displacement optical flow estimation,” in
Proceedings of the IEEE international conference on
computer vision, 2015, pp. 4015–4023.

[8] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
Hausser, Caner Hazirbas, Vladimir Golkov, Patrick
van der Smagt, Daniel Cremers, and Thomas Brox,
“Flownet: Learning optical flow with convolutional net-
works,” in Proceedings of the IEEE International Con-
ference on Computer Vision, 2015, pp. 2758–2766.

[9] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Ke-
uper, Alexey Dosovitskiy, and Thomas Brox, “Flownet
2.0: Evolution of optical flow estimation with deep net-
works,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017, vol. 2.

[10] J Yu Jason, Adam W Harley, and Konstantinos G Der-
panis, “Back to basics: Unsupervised learning of optical
flow via brightness constancy and motion smoothness,”
in European Conference on Computer Vision. Springer,
2016, pp. 3–10.

[11] Yi Zhu, Zhenzhong Lan, Shawn Newsam, and Alexan-
der G Hauptmann, “Guided optical flow learning,”
arXiv preprint arXiv:1702.02295, 2017.

[12] Anurag Ranjan and Michael J Black, “Optical flow es-
timation using a spatial pyramid network,” in IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017, vol. 2.

[13] Jonathan Long, Evan Shelhamer, and Trevor Darrell,
“Fully convolutional models for semantic segmenta-
tion,” in CVPR, 2015, vol. 3, p. 4.

[14] Diederik P Kingma and Jimmy Ba, “Adam: A
method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.


	 Introduction
	 Method
	 Computing Motion Cues
	 Network Architecture
	 Subnet Architecture
	 Prediction Unit
	 Fusion Unit


	 Experiments
	 Implementation Details
	 Evaluation on Benchmarks
	 Analysis

	 Conclusion
	 References

